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Abstract
We apply the quasiparticle self-consistent GW (QSGW) method to a cubic virtual-crystal alloy
La1−x BaxMnO3 as a theoretical representative for colossal magnetoresistive perovskite
manganites. The QSGW predicts it as a fully polarized half-metallic ferromagnet for a wide
range of x and lattice constant. Calculated density of states and dielectric functions are
consistent with experiments. In contrast, the energies of the calculated spin wave are very low
in comparison with experiments. This is affected neither by rhombohedral deformation nor the
intrinsic deficiency in the QSGW method. Thus we end up with a conjecture that phonons
related to the Jahn–Teller distortion should hybridize with spin waves more strongly than
people thought until now.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The mixed-valent ferromagnetic perovskite La1−x AxMnO3,
where A is an alkaline-earth such as Ca, Sr or Ba, shows the
colossal magnetoresistance, e.g. see reviews by Tokura and
Nagaosa [1] and Imada et al [2]. As they explain, the colossal
magnetoresistance is related to the complex interplay of spin,
orbital and lattice degree of freedoms. This is interesting not
only from the viewpoint of physics, but also for its potential
applicabilities. This interplay can also be related to the
fundamentals of high-Tc superconductors and the multiferroic
materials, which are now intensively being investigated [3, 4].

In order to understand the interplay, kinds of theoretical
works have been performed until now. They can be classified
into two approaches; one is the model approach and the other is
the first-principles one which are mainly based on the density
functional theory in the local density approximation (LDA) or
in the generalized gradient approximation (GGA) [5–9]. The
first-principles approaches have an advantage that it can give
energy bands (as quasiparticles) without any knowledge of
experimental input. Then kinds of properties are calculated
based on the quasiparticles. However, it is well known that the

3 Moved from: School of Materials, Arizona State University, Tempe,
AZ 85281, USA.

density functional theory in the LDA (and GGA) often fails to
predict physical properties for compounds including transition
metals. For example, Terakura et al [10, 11] showed that
the density functional theory in the LDA is only qualitatively
correct for MnO and NiO. Calculated bandgaps and exchange
splittings are too small, resulting in poor agreement with
optical and spin-wave experiments [12–15]. This is little
improved even in the GGA.

As a remedy, the LDA + U method has often been
used [16]. However, it has the same shortcomings as model
calculations: It can contain many parameters which are not
determined within the theory itself, e.g. different U for t2g

and eg orbitals [6, 17] and U for O(2p) (oxygen 2p) [18].
Even though there are theoretical efforts in progress to evaluate
these U parameters in first-principles methods [19, 20], we
now usually have to determine these parameters by hand so
as to reproduce some experiments in practice. Then we need
to check whether calculations with the parameters can explain
other experiments or not.

Many researches are performed along this line. Solovyev
et al investigated LaTO3 (T = Ti−Cu) in the LDA +U , where
they tested possible ways of LDA + U in comparison with
experiments. Then they concluded that LDA + U gives little
difference from the results in the LDA in the case of LaMnO3.
It was followed by their successful description of the spin-wave
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dispersions [7] and phase diagrams [8] in the LDA even for
x �= 0. Ravindran et al also showed a detailed examination
for LaMnO3 with full-potential calculations including spin–
orbit coupling and full distortion of crystal structure [9],
where they concluded that the density functional theory in the
GGA worked well for LaMnO3. Thus, both of these groups
reached the same conclusion that ‘We can treat La1−x Ax MnO3

accurately enough with the density functional theory in the
LDA or in the GGA, so do not need to use LDA + U ’.
It sounds very fortunate because we are not bothered with
difficulties about how to determine parameters U in the LDA+
U . However, we must check this conclusion carefully. For
example, one of the reasons why the GGA is accurate is based
on their observation that their calculated imaginary part of
the dielectric function ε2(ω) in the GGA agrees well with
experiment [9]. However, this is not simply acceptable if
we recall other cases where peaks in the calculated ε2(ω) are
deformed and pulled down to lower energies when we take into
account excitonic effects. Thus it is worth re-examining the
conclusion by some other methods which are better than those
dependent on the LDA or the GGA.

Here we re-examine the conclusion by the quasiparticle
self-consistent GW (QSGW) method, which is originally
developed by Faleev et al [12, 13]. Its theoretical and
methodological aspects, and how it works are detailed in [13]
and references therein. They showed that the QSGW method
gave reasonable results for a wide range of materials.

In section 2, we explain our method. Then we give results
and discussions in section 3. In our analysis in comparison with
experiments, calculated quasiparticle energies given by the
QSGW seem to be consistent with experiments. However, the
obtained spin-wave energies are about four times too large than
experimental values. From these fact, as for La1−x AxMnO3,
we end up with a conjecture that phonons related to the
Jahn–Teller distortion should hybridize with spin waves more
strongly than people thought until now. This is our main
conclusion presented at the end of section 3.

2. Method

We first explain the QSGW method which is applied to
calculations presented in this paper.

The GW approximation (GWA) is a perturbation method.
Generally speaking, we can perform GWA from any one-body
Hamiltonian H 0 including non-local static potential V eff(r, r′)
as

H 0 = −∇2

2m
+ V eff(r, r′). (1)

The GWA gives the self-energy �(r, r′, ω) as a functional
of H 0; the Hartree potential through the electron density
is also given as a functional of H 0. Thus GWA defines
a mapping from H 0 to H (ω), which is given as H (ω) =
−∇2

2m + V ext + V H + �(r, r′, ω). Here V ext and V H denote the
external potential from the nucleus and the Hartree potential
symbolically. In other words, the GWA gives a mapping from
the non-interacting Green’s function G0 = 1/(ω − H 0) to the
interacting Green’s function G = 1/(ω − H (ω)).

If we have a prescription to determine H 0 from H (ω),
we can close a self-consistency cycle; that is, H 0 → H (ω) →
H 0 → H (ω) → · · · (or G0 → G → G0 → · · ·, equivalently)
can be repeated until converged. One of the simplest examples
of the prescription is to use H (ω) at the Fermi energy EF, that
is, H 0 = H (EF) for H (ω) → H 0. In practice, we take a
better choice in the QSGW method so as to remove the energy
dependence; we replace �(r, r′, ω) with the static version of
self-energy V xc(r, r′), which is written as

V xc = 1
2

∑

i j

|�i〉
{
Re[�(εi)]i j + Re[�(ε j)]i j

} 〈� j |, (2)

where {εi} and {�i} are eigenvalues and eigenfunctions of H 0,
and �(εi) = 〈�i |�(εi)|� j〉. Re[ X ] means taking only the
Hermitian part of the matrix X . With this V xc, we can generate
a new H 0, that is, it gives a procedure H 0 → H → H 0.
Thus we now have a self-consistency cycle. By construction,
the eigenvalues of H 0 are in agreement with the pole positions
of H (ω). Thus the eigenvalue is directly interpreted as the
quasiparticle energies. This QSGW method is implemented as
an extension of an all-electron full-potential version of the GW
method [21] as detailed in [13].

Until now they have shown that QSGW works well for
many kinds of materials (see [13, 22] and references therein).
In [21], Kotani and van Schilfgaarde have shown that the
ordinary one-shot GW based on the LDA systematically
gave too small bandgaps even for semiconductors; this is
confirmed by other theorists [23, 24]. Thus the self-
consistency is essentially required to correct such too small
bandgaps [13, 25]. Furthermore, the adequacy of one-shot
GW is analyzed from many kinds of viewpoints in [26];
e.g. it shows that the usual one-shot GW cannot open the
bandgap for Ge as shown in its figure 6 (band entanglement
problem). The self-consistency is especially important for such
as transition metal oxides like La1−xAx MnO3 when reliability
of the LDA and the GGA is questionable. We have shown
that QSGW works well for a wide range of materials including
MnO and NiO [12, 13, 22, 25, 27, 28]. We observed the still
remaining discrepancies between the QSGW and experimental
bandgaps, but they are systematic and may be mainly corrected
by including the electron–hole correlation in the screened
Coulomb interaction W as shown by Shishkin et al [23].

In this paper, we focus on these two objectives:

(i) Difference of results in the QSGW and in the LDA.
(ii) Are results in the QSGW consistent with experiments? If

not, what can the results mean?

For these objectives, we mainly treat the simplest cubic
structure of the perovskite, one formula unit per cell, for
La1−x AxMnO3, where we set A as Ba in a virtual atom
approximation, that is, La1−x Bax is treated as a virtual atom
with the atomic number Z = 57 − x . We use 6 × 6 × 6 k
points in the first Brillouin zone (BZ) for integration. We also
treat a rhombohedral case for x = 0.3 (two formula units per
cell. Its structure is taken from [29]; angle of Mn–O–Mn is
∼170◦) to examine the effect due to the rotation of oxygen
octahedra (this is not a Jahn–Teller distortion). Neither phonon
contributions nor the spin–orbit coupling are included in all
presented calculations.
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Figure 1. (Color online) The left panels are energy band at x = 0.3 in QSGW and in LDA for the lattice constant, a = 3.934 Å (as used
in [7]) in the black solid lines. The Fermi energy EF is at 0 eV. The right four panels show five typical eigenvalues for different x , not only for
a = 3.934 Å, but also for a = 3.876 Å. Those are shown by (red) symbols ×, +, ◦, 
� and . Correspondence to those in the left panels are
indicated by thin (green) lines with arrows.

Because of the difficulty to apply the GW method to
systems with localized d electrons, even the one-shot GW
calculations were rarely applied to La1−x Ax MnO3 until now.
To our knowledge, one is by Kino et al [30] and the other is
by Nohara et al [31]. Both are only within the atomic sphere
approximation for one-body potential. In contrast, our method
is in a full-potential method. Thus our method here is superior
to these works in this point, and in the self-consistency in the
QSGW.

3. Results and discussion

In the left half of figure 1, we compare energy bands in the
QSGW and in the LDA at x = 0.3 for lattice constant a =
3.934 Å. The energy bands are roughly assigned as O(2p), t2g,
and eg bands from the bottom. In its upper panels, we show
labels t2g and eg to show the assignments. The QSGW gives
a bandgap in the minority spin (↑), that is, it is a half-metal,
though the LDA does not. This enhancement of a half-metallic
feature in GWA is already reported even in the one-shot GW
calculations by Kino et al [30]. Its implication is emphasized in
a recent review for a half-metallic ferromagnet by Katsnelson
et al [32]. The width of the eg↓ band in the QSGW shows
little difference from that in the LDA. In the QSGW, the t2g↓
band, which is hybridized with O(2p)↓, becomes narrower and
deeper than that in the LDA.

The right half of figure 1 shows five typical eigenvalues
as a function of x , not only for a = 3.934 Å, but also for
a = 3.876 Å. In all cases treated here, t2g↑-bottom at �

(bottom of conduction band for ↑) is above EF (EF is at 0 eV),
and O(2p)↑-top at R (top of valence band for ↑) is below EF in
QSGW. This means that it becomes fully polarized half-metals
in the QSGW (thus the magnetic moment is given as 4−x μB).
In contrast, the LDA gives a fully polarized half-metal only
when x = 0.5 for a = 3.934 Å (t2g↑-bottom is slightly above
EF). The eigenvalues of t2g↓-top at R are very close to that of
O(2p)↓-top at R in the QSGW, especially for large x . Though
the QSGW eigenvalues show linear dependences as a function
of x , the LDA does not. This is because the LDA has a small
occupancy for the t2g↑ band.

Figure 2 shows the corresponding total and partial density
of states (DOS). O(pz) denote O(2p) orbitals along Mn–O–
Mn bonding (for σ -bonding with eg orbitals). At first, the
La(4f) level is located too low in LDA, at only ∼1.5 eV
above EF for x = 0 [5], though the QSGW pushes it up to
∼EF + 10 eV. At x = 0, all peak positions in QSGW show
some disagreement with those in the LDA. This is due to the
large difference in the occupation for the t2g↑ band. On the
other hand, for x = 0.3, 0.5, we see that differences of the
total DOS are mainly for a peak at ∼EF − 2 eV in ↓, and a
peak at ∼EF + 2 eV in ↑. The former difference is related to
the t2g↓ level. If we push down the LDA t2g↓ level by ∼0.8 eV,
the occupied bands will be closer to those in QSGW . The
latter difference is related to both of the unoccupied Mn(3d)
(t2g↑ and eg↑). The QSGW pushes up t2g↑ and eg↑ by
∼1 eV, relative to the LDA results. The experimental position
of the t2g↓ band is described well in the QSGW than the
LDA as follows. Angle-resolved photoemission spectroscopy
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Figure 2. Density of states in QSGW (black solid line) and LDA (red
dotted line) for a = 3.934 Å. EF is at 0 eV. Left panels are for
minority spin, and right panels are for majority spin. Four panels
from the top to the bottom are for x = 0.0, 0.3, 0.5 and for the
rhombohedral cases, respectively. The 4f band in QSGW is above the
plotted region here in QSGW . O(pz) denotes O(2p) orbitals along
Mn–O–Mn. O(px , py) are perpendicular to O(pz).

(ARPES) by Liu et al [33] concluded that the Mn(3d) band
(presumably due to t2g↓) is ∼1 eV deeper than the LDA
result for La0.66Ca0.33MnO3. Chikamatsu et al [34] also
performed ARPES for La0.6Sr0.4MnO3, showing that there is
a flat dispersion around EF − 2 eV. These experiments for
t2g↓ support the results in the QSGW . As for the positions
of the unoccupied Mn(3d) bands, no inverse photoemission
experiments are available to identify them though we give
some discussions below when we show ε2.

As we see above, the main difference between the QSGW
and the LDA is interpreted as the difference of the exchange
splitting for the t2g band. Roughly speaking, the center of t2g↓
and t2g↑ given in the LDA is kept in the QSGW. Because
of the larger exchange splitting, QSGW shows large half-
metallic bandgaps. In addition, the eg↑ band is pushed up.
Based on the knowledge in other materials together with the
above experiments, we think that the QSGW should give a
better description than the LDA. Generally speaking, LDA can
introduce two types of errors when we identify the Kohn–Sham
eigenvalues with the quasiparticle energies. One is the U -
type effect as in LDA + U . This is an onsite contribution
for localized orbitals. The other is the underestimation of
the bandgap for extended orbitals as in semiconductors. (In
the case of diatomic molecules, non-locality in the exchange
term can distinguish bonding and anti-bonding orbitals, though
onsite U cannot.) As seen in [13], QSGW can correct these two
at the same time without any parameters by hand.
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Figure 3. Imaginary part of the dielectric function ε2 for
a = 3.934 Å. Local-field correction is neglected but it should be
negligible as in the case of MnO and NiO [13]. Upper panel is to
compare calculations in QSGW and in LDA with an experiment for
La0.3Sr0.7MnO3 [35] by a black solid line. In the lower panel, we
show results in QSGW for different x . Because of a limit in our
computational method, ε2 for <0.5 eV are not calculated. (In
practice, our results are with the wavevector q = 2π

a (0, 0, 0.04)
instead of q = 0, though we confirmed little changes even at q → 0.)

Figure 3 shows ε2 in comparison with the experiment [35]
for Lax Sr1−xMnO3. The LDA seemingly gives reasonable
agreement with the experiment. For example, the peak
position around 4eV, which is mainly due to transitions within
the ↑ channel, seemingly gives excellent agreement with
the experiment (upper panel). This is consistent with the
conclusion by Ravindran et al [9]. On the other hand, ε2 in
the QSGW gives peak positions located at higher energies than
the experiment by ∼1 eV. However, this kind of disagreement
is what we observed in other materials [13], where we
identified two causes making the difference: (a) a little too
high unoccupied quasiparticle energies in the QSGW and (b)
the excitonic effect which is related to the correlation motion
of electrons and holes during the polarization (we need to
solve the Bethe–Salpeter equation). As for (a), we have an
empirical procedure to estimate the error due to (a); a simple
empirical linear mixing procedure of 80% of V xc equation (2)
with 20% of the LDA exchange–correlation in practice worked
well as shown in [22, 28]. We have applied this to the case for
x = 0.3 and a = 3.934. Then the t2g↑ level (× in figure 1) is
reduced from 1.15 to 0.93 eV. This level of overestimation by
0.2–0.3 eV is ordinary for bandgaps of semiconductors [25].
If this estimation is true, the main cause of the disagreement
should be due to (b). We think this is likely because we
expect large excitonic effects due to localized electrons. At
least the disagreement in figure 3 does not mean inconsistency
of the QSGW results with the experiment, though we need
further research on it in future. In addition, the effect due to
the virtual-crystal approximation is unknown. We have also
calculated ε2 for a rhombohedral structure, resulting in very
small differences from that for the cubic one. The lower panel
in figure 3 shows changes as a function of x . Its tendency as a
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Figure 4. Spin-wave dispersion along �–X, �–M and �–R lines for a = 3.934 Å. Negative energy means the unstable modes. We also
superpose the spin-wave dispersion in a rhombohedral case for x = 0.3 by pink lines (only �–X and �–R/2 in the QSGW panels). It is almost
in the cubic case, where R/2 = (0.25, 0.25, 0.25) in the cubic structure is on the BZ boundary of the rhombohedral structure.

function of x (the first peak at ∼5 eV is shifted to lower energy
and the magnitude of the second peak at ∼9 eV is reduced for
larger x) is consistent with the experiment [35].

Let us study the magnetic properties. As discussed
in [7], the exchange interaction is mainly as the sum of
the ferromagnetic contribution from the eg bands, and the
antiferromagnetic one from the t2g bands. By the method
in [15], where the spin-wave calculation based on the QSGW
reproduced experimental results very well for MnO and NiO,
we obtain the spin-wave dispersions as shown in figure 4. The
method is in a random-phase approximation to satisfy (spin-
wave energy) → 0 at the wavevector q → 0. In the LDA, the
ferromagnetic ground state is stable at x = 0, but it becomes
unstable at x � 0.3. This is consistent with the result by
Solovyev et al [7], though our LDA results are a little smaller
than those for larger x . On the other hand, we found that the
ferromagnetic state is stable even at large x in the QSGW:
roughly speaking, the spin-wave energies in the QSGW are
about four times larger than the experimental results [36]. We
also show the spin waves for the rhombohedral case in figure 4
(along �–X and along �–R/2), but they are almost on the
same line in the cubic case. This means that the rotation
of the oxygen tetrahedra gives little effects for its magnetic
properties. In order to check effects of overestimation of the
exchange splitting in the QSGW [13, 23, 25], we use the linear
mixing of the 20% LDA exchange correlation as we already
explained when we discussed ε2, and calculate the spin-wave
dispersion. Then it reduces the spin-wave dispersion only by
∼11%; thus our conclusion here is unchanged. Our results for
the spin-wave dispersion in the QSGW can be understood as a
result of the reduction of the antiferromagnetic contribution of
the t2g bands because of their large exchange splitting.

As a summary, our result for the spin-wave disper-
sions in the QSGW is clearly in contradiction to the experi-

ments [36–38]. In contrast, we have shown that the quasipar-
ticle levels and ε2 are reasonable and consistent with experi-
ments. Therefore we conjecture that it is necessary to include
the degree of freedom of phonons through the magnon–phonon
interaction so as to resolve the contradiction. In fact, [39, 40]
had already suggested that the magnon–phonon interaction can
change the spin-wave dispersions largely by the strong hy-
bridization with phonons of the Jahn–Teller distortion. In con-
trast, the magnon–phonon interaction was supposed to play a
much smaller role for the spin-wave dispersion in some exper-
imental works than our result suggests: for example, Dai et al
[37] and Ye et al [36] claimed only the softening around the
BZ boundaries are attributed to hybridization: Moussa claimed
that the spin-wave dispersion is little affected by the magnon–
phonon interaction [38].

In conclusion, the QSGW gives a very different picture
from the LDA for the physics of La1−xAx MnO3. The main
difference from LDA is for the magnitude of the exchange
splitting for the t2g band. It is ∼2 eV larger than that in
the LDA. QSGW predicts a large gap in the minority spin
(i.e. it is fully polarized). Our results are consistent with the
ARPES and the optical measurements, but not with the spin-
wave measurements. We think that this disagreement indicates
a very strong hybridization of spin wave with the Jahn–Teller
type of phonons. It should be necessary to evaluate its effect
based on a reliable first-principles method.
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Rev. B 30 4734
[11] Terakura K, Williams A R, Oguchi T and Kübler J 1984 Phys.
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